
 95

6. Compositing workflows

This chapter of the User’s Guide contains documentation and tutorials
specific to offline compositing. In other words, what you’ll find here is
concerned with post-production work rather than live video.

Pro Pixels
– working in raw YUV video,
Cineon/DPX and OpenEXR

Conduit is an inherently floating-point based compositing system: it treats
pixels as real numbers that can take any possible value. This is a paradigm
shift from traditional digital imaging systems because Conduit effectively
guarantees that your images won’t suffer from loss of dynamic range or
clipping of highlights, regardless of how many effects and operations are
performed on them.

To make full use of Conduit’s pervasive floating-point support, it becomes
critical to have direct access to image data stored in the bewildering range of
file formats and color spaces that are used in the real world of professional
video and film production. On the input side, it’s necessary to be able to get
pixels into Conduit in “raw” form (bypassing any conversions that are
typically performed by media services like QuickTime). On the output side,
it needs to be possible to store pixels in a variety of file formats making full
use of the maximum precision allowed by each format.

Many compositing tasks like extracting a green-screen key become easier
and will deliver better results when you’re working as close to the source
material as possible. PixelConduit introduces a number of features that will
get the best out of your footage and also make it easier to integrate Conduit’s
live floating-point rendering capabilities into film and video workflows:

• Realtime playback of image sequences with full color precision
• Import & export of raw floating-point YUV footage in QuickTime

files (this allows e.g. lossless 10-bit uncompressed video workflows
regardless of codec)

• Import & export of DPX/Cineon images with support for 8/10/16 bit
RGB and 4:2:2 YUV formats

• Import & export of OpenEXR images
• Improvements to Cineon (log) <=> Linear conversion nodes:

algorithms and parameters now match Shake for full DPX/Cineon
interoperability

• Multi-layer OpenEXR support for convenient access to extra
channels such as high-precision Z buffers rendered from a 3D
application

• New viewer options for easy previews of images that are processed in
their raw formats

 96

Raw video: unmodified YUV in and out

Computer images have traditionally been RGB-based. In contrast, practically
all video equipment uses some kind of YUV color space natively. In an YUV
format, the image is separated into a “luma” (brightness) channel and two
“chroma” (color difference) channels. The main advantage of YUV is that
the human eye is not as good as perceiving color changes as brightness levels,
so the chroma channels can be compressed more heavily.

Many digital compositing systems (including Shake and After Effects) are
fundamentally RGB-based. These applications are not able to read raw YUV
data directly from video files. In this case, a YUV->RGB conversion must be
performed by the media service layer that manages the video file (on the
Mac, QuickTime serves this role).

The quality of this conversion depends entirely on what is supported by the
video codec and whether it matches the expectations of the application. In
many cases it doesn’t work out, and thus valuable data is lost and errors are
produced before the image even reaches the compositing system.

Commonly seen symptoms of this problem include:

• Loss of superwhites and superblacks (most YUV formats have some
“headroom” for brightness values above and below the nominal
white/black points, but this useful highlight information is typically
lost in RGB conversions)

• Loss of dynamic range (even if the original data is 10-bit YUV, the
codec may use an 8-bit RGB intermediate format in its conversion)

• Banding (occurs due to aliasing of value ranges, e.g. when YUV data
with an original range of 16-235 is converted to RGB with a range of
0-255)

• Gamma shifts (the conversion may produce RGB pixels with a
different implicit gamma than what the application expects)

• Color shifts (the conversion may be using the wrong YUV
conversion function)

PixelConduit eliminates these problems with its Raw YUV mode. When
working in raw YUV, what you see is exactly what’s in the original file – no
conversions are performed by either QuickTime or Conduit except to
upconvert the data to floating-point precision.

 (Raw YUV mode is also supported for DPX image sequences in addition to
QuickTime movies.)

To enable raw YUV, click on the Action button (gear icon) for the source
node:

 97

When raw YUV is enabled, the source node produces floating-point images
with the following characteristics:

• red channel contains the luma channel;
values are in range 0 – 1

• green channel contains the “Cb” chroma channel;
values are in range 0 – 1

• blue channel contains the “Cr” chroma channel;
values are in range 0 – 1

• alpha channel is the original alpha from the video file
(if the file did have alpha)

 The above ranges are true regardless of what kind of YUV coding was used
by the original file. You don’t need to care about implementation details
such as whether the luma was coded in a range of 16-235; Conduit always
stretches it to a range of 0-1, with superblacks as negative values and
superwhites above 1.

Viewed as-is, the raw YUV image will look wildly discolored:

 98

To see it correctly, we need to tell Conduit to perform the YUV->RGB
conversion. There are two options:

• If we just need a preview, we can apply the conversion directly in the
Viewer. Click on the “Color transform” button and choose either of
the YUV conversion options.

• If we intend to further process this image, it usually makes sense to
convert it to RGB. Open the Conduit Editor and apply an YUV-
>RGB node. (Remember that all conversions within Conduit are
fully lossless, so even superwhites and superblacks are preserved:
they simply produce RGB values that go above 1 or below 0. No data
is lost if you convert back to YUV at the end of the workflow.)

At this point, we need to know the YUV color space of the original image so
that the correct type of conversion is applied. Unfortunately there are two
options (choosing the wrong one will produce a small but noticeable shift in
red/yellow tones). However, as long as you know what kind of camera or
tape format was originally used to produce the image, it should be easy to
choose. These color spaces are known by their highly technical-sounding
official names, but they’re not all that scary once you get to know them:

• Rec. 601.
This YUV conversion function is used by SD equipment (including
DV, DVCPRO, and generally anything that’s NTSC or PAL).

• Rec. 709.
This YUV conversion function is used by HD equipment (including
HDV, AVCHD and DVCPRO HD).

If you’re unsure, you can make a guess by the image size: any video with a
frame height of 720 or 1080 pixels is likely to originate on HD equipment
and would thus use the Rec. 709 conversion function.

 99

The availability of raw YUV as a separate mode in PixelConduit raises an
important question: what exactly happens when the raw YUV mode is not
enabled?

In its default (“implicit RGB”) mode, PixelConduit will use the fastest
possible path for delivering the video data to the GPU for rendering. Most
GPUs support native decoding of YUV 4:2:2 data to RGB, and Conduit takes
advantage of this capability. So, the video is decoded by QuickTime as YUV
4:2:2, then converted to RGB on the GPU. This hardware path is very fast but
has a downside: the YUV-to-RGB conversion performed by the GPU is not
customizable. The conversion function used by the GPU is practically
guaranteed to be Rec. 601 – that means that if your footage originated on
HD equipment, you’ll need to add a Convert YUV Space node in Conduit
(or just use the raw YUV mode to eliminate this slight guesswork).

Exporting raw YUV

Mirroring what’s available on the import side, PixelConduit allows direct
exporting of raw YUV data. The benefits are the same: it guarantees that
QuickTime (or the video codec) isn’t doing anything funny to your images,
and it gives you access to the benefits of native YUV formats. In particular
it’s possible to store “superwhites”, and the higher dynamic range of 10-bit
uncompressed YUV formats is guaranteed to get properly used. (Many RGB-
based applications are simply unable to export QuickTime movies that
would take advantage of those extra bits in 10-bit codecs, but their vendors
are obviously not too eager to put a fine point on that.)

To export raw YUV in QuickTime, just check its checkbox in Export
Settings:

If your images are in RGB format within Conduit, you can enable a
conversion at this point. (This conversion is exactly the same as applying an
RGB->YUV node within Conduit; it’s provided here as a convenience.)

When selecting the QuickTime codec, you must choose one that works with
native YUV. (Conduit will tell you if you make a wrong choice, so you can
experiment with the codecs available on your system.)

Some common codecs that use native YUV are:

• Photo-JPEG

• H.264 and MPEG-4

• Uncompressed 8-bit 4:2:2

• Uncompressed 10-bit 4:2:2

• DV, DVCPRO, DVCPRO50, DVCPRO HD

 100

• HDV, AVCHD

• MPEG IMX, XDCAM HD

To store YUV data in its native format, an alternative to QuickTime is using
DPX image sequences, which are also supported in PixelConduit for raw
YUV export. This may be a particularly appealing option in a multi-platform
environment, or if you’re archiving footage and would prefer it to be stored
as individual files in an open file format.

PixelConduit offers realtime playback of DPX image sequences, so typically
there is no significant performance penalty if you choose to use DPX instead
of QuickTime.

Working with film images: Cineon/DPX file format

Image sequence playback support in PixelConduit encompasses
Cineon/DPX files which contain high dynamic range image data with 10 or
16 bits per channel.

Although Cineon/DPX files are traditionally used mostly in film post-
production for so-called “digital negative” frame storage, the advantages in
dynamic range afforded by the format’s extra bits are tangible and can
benefit anyone who works with video images.

This file format was defined by Kodak for their Cineon digital film scanner
with the aim to preserve as much of motion picture film’s dynamic range as
possible. Thus the Cineon format provides for significant headroom above
the nominal white point (to handle overexposed film negatives), and the data
is stored in a logarithmic representation which is based on film density
metrics.

When opening a Cineon image in Conduit, it will look washed out:

(Above sample 10-bit logarithmic DPX image courtesy of Thomson.)

 101

To properly view this image, we need to apply a “Cineon to Linear” node,
which performs the conversion defined by Kodak. The result will look very
dark, but that’s because it’s in linear luminance color space – we’ll fix that in
a moment:

To have a better idea of what the Cineon to Linear node is actually doing, we
can take a look at Conduit’s plot window:

In this screenshot, the plot’s vertical range has been stretched up to 8.0 to
make it clearer how the Cineon to Linear node makes those highlights shoot
through the roof. We see that, thanks to the logarithmic transfer curve and
enormous headroom in Cineon files, it’s possible to store values that are over
8 times as bright as the nominal white point.

Something that’s still missing from proper display of this image is conversion
to the computer screen. The Cineon to Linear node converted the data to
linear luminance color space, which is a good choice for film-like

 102

compositing, but we must apply another conversion to preview the linear
image on a computer display. This conversion is basically a gamma curve,
and it’s available in Conduit as the “Linear to Video” node. But we can also
enable it in the Viewer:

This is the image as it’s intended to be seen on a computer display. (To see
the extra detail that we know exists in those overexposed highlights, we
could simply add a Levels node and tweak the output white level lower,
which would reveal the super-bright detail in the highlights.)

You may need to perform additional corrections on the image for display.
Some useful nodes are Exposure, Highlight Knee (to round out specular
highlights) and Convert RGB Space (to display images that use a different
color gamut such as Adobe RGB, or a different color temperature). You can
of course build more complex algorithms with Conduit’s math nodes: the
nodes are always concatenated so that performance does not suffer.

When exporting to DPX, it makes sense to consider using the Cineon color
space even if your data did not originate on film. It’s of course perfectly
possible to store any kind of pixels in DPX files as long as you know what’s
in there, but some applications or users may assume that all 10-bit DPX files
are using the Cineon color space. To export Cineon images, you should
apply a “Linear to Cineon” node in Conduit at the end of your effect.

Having that headroom for super-bright highlights may seem superfluous
when not working on film-originated images. But in fact video footage
typically contains some headroom as well (see the previous part on raw YUV
for more information on how you can ensure you’re getting all the data
intact from your video footage). When you’re processing images in Conduit,
it’s easy to create super-bright values through various means – for example
by simply applying a Levels node, or compositing a Gaussian Blur on top an
image to make a glow effect. These super-bright values may be worth
preserving using the Cineon format. After all, why clip your images’ pixels if
you don’t have to?

 103

OpenEXR: the floating-point multi-channel connoisseur’s
choice

Another professional image file format supported by PixelConduit is
OpenEXR. This format, which uses the file extension .exr and is sometimes
simply called EXR, was originally created by Industrial Light & Magic to
solve their file interchange needs for high-end 3D compositing work.
Primary concerns were high dynamic range and flexibility in storing special
types of rendered data. Thus OpenEXR is inherently floating-point and
supports an unlimited number of image channels.

OpenEXR is a great match for Conduit’s floating-point capabilities.
PixelConduit offers easy access to extra channels stored in an OpenEXR
image. This is particularly useful when working with images that were
produced in a 3D application, as many 3D renderers now support the
OpenEXR format and are capable of outputting extended render data such as
high-precision depth information (“Z” channel) or surface normals (which
could be used for some impressive post-production lighting and texturing
effects in Conduit).

When opening an OpenEXR file or image sequence that contains extra
channels, PixelConduit will present a dialog for selecting which layers should
be activated:

A “layer” is simply a group of related channels. In an OpenEXR file, the base
layer is typically RGBA or luminance+chroma (which gets converted to RGB
automatically). Individual extra channels in an OpenEXR file are represented
as a single layers, for example the “Z” layer in the above example.

The selected layers become available as extra outputs on the source node:

 104

The following example shows the Z channel from the Blobbies sample image
(it’s available from OpenEXR’s web site). This extra channel contains pixel
depth values output by the 3D rendering software that produced the image.
The values extend beyond 1 (theoretically all the way to infinity), so we need
to scale them to a range that suits our purposes.

In the screenshot below, the Z channel has been scaled using a Levels node
with an “input white” value of 20 – this effectively maps a depth value of 20
in the Z channel into one, scaling all values in proportion.

Without the Levels node, this image would show only white. (This is because
all the objects in the rendered image happens to be further away than a
distance of “1” in the 3D application’s coordinate space, thus all the rendered
pixel values in the Z channel are >1.)

The following screenshot shows the color layer for this image:

 105

The next screenshot shows a basic depth fog effect made in Conduit using
the two layers. The color layer is colorized blue and blended on top of the
original using the Z channel as an alpha mask. A blue gradient is used as the
background.

Note that the “linear to video” color transform is enabled in the viewer. This
is because OpenEXR images normally are in linear luminance color space.
(In the context of OpenEXR, linear luminance is also called “scene referred”:
this implies that values stored in the image pixels are proportional to the
relative amount of light coming from the corresponding objects in the
depicted scene).

You may want to perform additional corrections on the OpenEXR image for
display. Some useful nodes are Exposure, Highlight Knee (to round out
specular highlights) and Convert RGB Space (to display images that use a

 106

special color gamut such as Adobe RGB, or were rendered in a different
color temperature). You can also build more complex algorithms with
Conduit’s math nodes: the nodes are always concatenated so that
performance does not suffer.

Exporting to OpenEXR

When exporting to OpenEXR image sequence, you need to decide the data
format and compression.

The “luminance+chroma” format is conceptually similar to YUV discussed
previously, but the algorithm used by OpenEXR is different from what’s used
for production video. OpenEXR’s luminance+chroma format is especially
designed for floating-point color, and it uses high-quality subsampling to
accomplish substantial savings in file size with nearly lossless results visually.

When PixelConduit loads an OpenEXR file, it will automatically convert the
luminance+chroma data to RGB, so using luminance+chroma files is
completely transparent for your workflow. One downside to
luminance+chroma is that the decompression algorithm is quite compute-
heavy: realtime playback of these files may only be accomplished on a fast
system like a recent Mac Pro.

The compression formats provided by OpenEXR involve similar trade-offs.
“RLE” offers very fast decompression, but can’t compress typical
photographic images very much (for cel-animation style images with large
color areas it is a competitive option). “ZIP” is the well-known Zip
algorithm, which is fairly slow to decompress and is not particularly suitable
for photographic images. “PIZ” is a lossless wavelet-based method devised by
ILM; according to their data, it provides the best overall compression ratio
for photographic and 3D-rendered images. However, PIZ is quite slow to
decompress.

B44 is different from the other compression formats as it is slightly lossy. In
return, it is fast to decompress. Overall this is the format that’s best suitable
for realtime playback. If you have a very fast computer, the combination of
B44 and luminance+chroma is perhaps the best choice for combining small
file size and realtime playback capability. (B44A is a variant of B44 which
compresses large uniform color areas more efficiently. This is useful e.g. for
images which have an alpha channel which is mostly black or white.)

Choosing between export file formats

The choice of file format depends on how and where the exported footage
will be used in the future. If image quality and maximum color precision

 107

were the only concern, OpenEXR image sequences would be the choice for
everyone. But in the real world there are also other factors to consider – here
are some important ones:

• Disk space. Uncompressed formats like 10-bit QuickTime video or
DPX image sequences (or lightly compressed, like RLE OpenEXR)
have a large footprint. Depending on resolution and color depth, the
required bandwidth can be several gigabytes / minute of footage.

• Playback performance. This is typically primarily limited by the disk
system (a fast enough RAID is necessary for smooth playback of
high-res image sequences). But compression also plays a role: for
example, the OpenEXR “PIZ” compressor is quite slow to
decompress.

• Application compatibility. QuickTime has the advantage of being
practically ubiquitous on Mac OS X. However, most applications
only support the lowest common denominator of image formats.
Even if your data is stored as 10-bit uncompressed YUV, chances are
that a typical QT-using application will treat it as 8-bit RGB. A
notable exception is Final Cut Pro, which explicitly supports
floating-point YUV for rendering (it can be enabled in sequence
settings).

• Cross-platform compatibility. Data stored in a QuickTime file using
a pro video codec may be difficult to access on a non-Mac platform.
Although QuickTime is available for Windows, most of the Final
Cut Pro codecs are not. On Linux there is no Apple-provided
QuickTime at all, so the situation is still more complicated. Image
sequences are a sensible choice when you require the maximum
cross-platform compatibility. They also provide the convenience of
being able to access individual frames using a regular image viewer
application, and they can make backup easier because large
sequences can be split on a frame basis.

 108

Drowned World
– a creative compositing tutorial

In this tutorial, I'd like to show you some examples of how PixelConduit can
be used as a standalone compositor. If you thought PixelConduit is only for
live video, hopefully I can convince you to take a second look.

The aim of PixelConduit is not to replace After Effects or Nuke, but simply
to provide an additional tool in the visual artist's toolbox. PixelConduit does
less than the big multi-thousand-dollar compositing packages, but does it
fast. PixelConduit is uniquely affordable, and hides interesting surprises like
pervasive floating-point rendering and linear light compositing – you’ll see
that high dynamic range colors are everywhere in Conduit!

Topics covered by this tutorial include: drawing vector shapes, compositing
in linear light mode, creative color correction, using keyframes, generating
text, and using scripted plugins.

The setup built in this tutorial ressembles a real-world task. The goal is to
create an introductory jungle scene for a hypothetical sci-fi movie set in a
watery dystopia. The starting point was a video clip that was shot in an
indoor pool:

The next image shows the end result that I built up through
experimentation. All the elements added to the image were created in
Conduit – no graphics were imported from Photoshop (that would be
cheating!).

 109

You can watch the effect in motion by visiting this web link:

http://lacquer.fi/conduitsamples/drowned_world_conduit2_sample.mov

Drawing the foreground shapes

I started by drawing some vaguely jungle-like shapes on top of the base
image. This was done with the Shapes node. (There is a separate tutorial
available in this book concerning Shapes.)

This is what the vector shapes look on their own – in other words, this is the
output from the Shapes node:

 110

The Over node is used to composite a blurred version of the shapes image on
top of the footage:

It's very easy to edit the vector shapes while viewing the composited result –
simply click on the Shapes node to show its editing tools and controls in the
Viewer:

Now that we're combining visual elements from different sources, we must
make an important decision: should we be using linear light colorspace? In
most cases, the answer is yes.

 111

The terminology used may sound a bit scary, but the concept behind linear
light compositing is fairly simple. It's all about making our pixel values
behave like real light values. This is done by removing gamma correction
from the source images.

Gamma correction is a process usually applied by the camera. When the
image sensor behind the camera's lens captures an image, the picture is in a
linear light format – each pixel corresponds to an actual light value. But
digital images are not stored like this. The fundamental reason is that human
vision does not perceive lightness values in a linear fashion: to our brains,
darker areas appear lighter than the actually are. The camera applies a
gamma curve to the image data in order to make the pixel values correspond
more closely to how the viewer will perceive them.

This is all well and good for viewing images, but in compositing, we want to
work with something closer to actual light values. Consider a situation where
we would like to add a semi-transparent screen into an image. The screen
would block 50% of the light. If we're working in linear light, we can simply
use a black layer at 50% opacity, and the resulting effect will look "right" in a
way that's difficult to approximate when working with gamma-corrected
images.

In the case at hand, we would like the blurred jungle shapes to look as "real"
as possible. Therefore we'll use the Video to Linear node to convert both the
Shapes output and the input image to linear light colorspace before
compositing. The following image shows the difference:

At this point, you may be thinking: "What's the point? The difference is
barely noticeable!". But look more closely on the left-hand side of the image,
where those bright water reflection highlights are obscured by the fake trees.
See how the bright areas are "eating" into the black shapes in the linear
version, whereas the trees are just all black in the regular video version? This
kind of detail is not obvious, but when building up a composited image from
many elements, the little details will add up... And they can end up making
the crucial difference in whether the viewer eventually believes the shot.

 112

To view a linear light image on a computer monitor, we need to re-apply the
gamma curve. The Linear to Video node can be used for this purpose.

The Viewer in PixelConduit also has a built-in mode for viewing linear
images, which can make your life easier when working on a linear effect shot:

Color for the mood

Next, we’ll look closer into the color correction applied to the footage. The
following screenshot shows the processing that is applied to the footage first.

What's the 2D Transform doing here? If you look
at the original footage shown at the beginning of
this document, there's a foreground element in
the bottom right-hand corner that doesn't really
fit with the idea of repurposing this shot for a
jungle scene. The 2D Transform node is used to
upscale and translate the image a bit, so that the
unwanted element will be hidden behind the dark
vegetation shapes.

Moving down the node tree, next we have a Video to Linear node, whose
rationale is explained in the previous post. Finally, a Multiply node is used
for primary color correction: the source image is multiplied with a bright
yellow color. The precise color values are shown in the above screenshot:
1.26 red, 1.3 green, 0.62 blue.

There are two questions that arise here: what exactly does multiplication
have to do with color correction? And why are those red and green values
above one, i.e. "brighter than white"?

The relation of multiplication to color correction is a simple one. In fact, it's
exactly analogous to how color correction worked in a film laboratory. Once
the film negative is developed and cut, it is used to produce positive prints –
film rolls that can be shown in a movie theatre. At this point, it's possible to
change the color of a scene by modifying the intensity and color of the lamp
that is used to expose the negative onto the positive stock. This is effectively
equivalent to multiplying the source footage (= the negative) with a solid
color (= the lamp).

This film lab analogy also explains why I'm using those greater-than-one
values for red and green. The yellow color node here is just like the lamp in
the film print machine. To make yellows brighter than in the original scene,
I've turned up the lamp's intensity above the "nominal level". Values that
were simply "maximum white" – RGB (1, 1, 1) – in the original image will,
after the multiplication, have an RGB value of (1.26, 1.3, 0.62). The Multiply
node has created high dynamic range colors for us.

 113

Remember that this is operation is taking place in the linear light colorspace.
That's a fundamental requirement of making Multiply behave light real light.

Next up, some tone tweaking and a gradient overlay to add some depth. (The
left-hand side shows the output from the Gradient node, highlighted in the
screenshot.)

The Bezier Curve node here applies a slight S-shaped curve to increase
contrast in an eye-pleasing way. This is the operation that's often called "film
gamma" by various tools and camera modes. Applying it yourself using
curves gives more control over the output than relying on a preset.

After that, there's another Multiply node: the image is being multiplied by a
gradient. You can see the gradient in the screenshot above: it's got pale
yellow at the top, white in the middle, and a blue zone at the bottom. (This
screenshot was taken while viewing the Gradient node as "solo" – i.e. the
Viewer is showing only the output of that node. This is indicated by the glow
around the Gradient node. You can view a node as solo simply by double-
clicking on it.)

The idea of multiplying with this gradient is to focus the viewer's attention
on the middle of the image, and increase the impression of depth by varying
the colors. The blue in the front could also be thought of as the shadow from
the vegetation we're going to composite in the front.

By the way, if we were really trying to fake a shadow on a hot day, perhaps a
color with a purple tint would be the most effective choice. Purple is
complementary with yellow, and shadows with complementary colors give
the impression that the light source is very intense. It's a subtle color contrast
trick that painters have used for centuries.

Here's what we have so far. Original footage first, followed by composited
result:

 114

It’s looking pretty tropical now. Only a few more things remain to be done to
reach the result shown at the start of this tutorial: we need to add the text
and the animated rain, and create keyframes to animate the fade-in effect at
the start of the clip.

Keyframes are a familiar concept from many animation and compositing
software packages: everything from Maya to Flash to After Effects uses
keyframes as the primary interface for animating elements.

The keyframing you’ll find in PixelConduit is not meant for large-scale
animation projects. Rather, our aim was to offer the minimum set of features
necessary for typical animation tasks in compositing, and wrap it in a simple
and elegant package.

 115

The primary interface for keyframe animation is the Curve Editor. It is a
floating window that can be opened for any parameter which supports
keyframes:

For example, the sliders in the Sliders and Color Pickers window can be
animated with keyframes. Just click on the button with a curve icon next to
the slider value to open the Curve Editor:

For simple things like making a fade-in, it can be usually enough to simply
animate one of the sliders. But when you need more control, you can use the
Animation Curves node widget.

The next screenshot shows Animation Curves being used in the
PixelConduit project for this tutorial:

 116

The Animation Curves node widget can contain as many individual
keyframe curves as you need. The keyframe values can then be used to drive
any other node widgets. In the above screenshot, I've made two keyframe
curves, given them the names ‘text opacity’ and 'image opacity' to indicate
how I plan to use them, and then connected the values to the Conduit
Effect's sliders input.

This way, my keyframe values have become accessible as the Slider values
within the conduit effect. Any effect that uses the Slider nodes is now
animated by these keyframe values. In other words, the Slider nodes in a
conduit effect really don't have any meaning on their own – it's entirely up to
me how to configure them.

 (Here, I've decided that "Slider 1" will control text opacity, and "Slider 2" will
control image opacity. You'll soon see how this looks in practice within the
conduit effect's node setup.)

A few words about how to use the Curve Editor window:

• The yellow vertical line indicates the current time. If you don't see
the yellow line, it's probably because your PixelConduit project is
not in Timeline mode.

This is an important concept that affects how PixelConduit operates:
there are two clock modes, Free Run and Timeline. They are quite
different, and the choice between the two modes depends on your
use case.

In Free Run mode, there's no fixed duration to the project. When
you press Play, the clock starts running and the node widgets will
keep producing output until Stop is pressed. This mode is ideal for
dynamic situations where you don't know the exact length of the
‘show’: live video capture, performance, installations...

In Timeline mode, the application behaves like a traditional video
compositor. The project has a specific duration, and play controls
become available in the user interface for moving to a specific time
within the timeline. In this tutorial, we’re working exclusively in
Timeline mode.

• The purple background shows the duration of the project. The time
in seconds is displayed along the horizontal axis, at the bottom.
To move on the timeline (i.e. change the current time), you need to
click on the Timeline display in the Project window.

• To jump from one keyframe to another, click on the "Previous" and
"Next" buttons in the bottom right-hand corner.

• When a keyframe point is selected, you can change its smoothing
mode (a.k.a. interpolation), which determines how the value changes
between keyframes. The available options are Linear and
Autosmooth. When keyframes are set to Autosmooth, the animated

 117

value will change softly instead of a sharp turn.

• To easily change a keyframe's vertical or horizontal position only,
select the keyframe point, then click on one of the fields next to
"Coordinates", and drag with the mouse.

Now we have animated values for text and image opacities. Next, we need to
make those values actually affect something in the conduit effect:

The setup shown in the above screenshot is pretty simple. Slider 2, the value I
previously labelled 'image opacity', is connected to a Multiply node. Thus
when this value goes to zero, the output goes black. Slider 1, the value
labelled 'text opacity', is used to control the opacity of an Over node.

So where does the text come from? One way to create text in PixelConduit
would be to use the Live Titles node widget available in the Stage Tools add-
on, but it’s more designed for live subtitling.

We could of course just draw the text in another application like Photoshop
and import it as an image into Conduit… But this is a tutorial dedicated to
showing all sides of the new PixelConduit, so let's not let the lack of a
dedicated Text node stop us! What Conduit does have is a very flexible
render node called Canvas, and we can easily customize it to draw some text.

There is actually an entire separate tutorial about Canvas; if you’re
interested, it can be found in Chapter 4 of this book. However you don't
need to read all of that just to draw some text.

Simply create a Canvas node, open the Scripts tab, choose generateInCanvas
from the dropdown list of available scripts, and paste in the following:

var ctx = canvas.getContext('2d');
var w = canvas.width;
var h = canvas.height;

var x = w * 0.5;
var y = h * 0.3;

var text = "This is a sample text";

ctx.font = "bold 50px Helvetica";
ctx.fillStyle = "rgba(0, 150, 90, 0.9)";
ctx.fillText(text, x, y);

You don't really need to know any programming at all to modify this script.
Ignoring the first three lines, it's all content. The lines beginning with "var x"

 118

and "var y" determine the position of the text; the "var text" line determines
what text gets printed; the "ctx.font" line determines the font used to draw
text (in this case, 50-pixel Helvetica Bold); the "ctx.fillStyle" line sets the color
used to draw text.

That's it for rendering text. For the purposes of this tutorial, I've added a
little twist to how the text is colored: it's actually filled with the same gradient
that was used for color correcting the background image earlier. This way, if
you modify the background color, the text's coloring will change
accordingly. (This is an example of how Conduit's nodal interface can be
used to create relations between elements in the same image.)

The following screenshot shows all the nodes leading up to the final image.
It's a fair amount of nodes, but hopefully this tutorial will have given you a
better understanding of how it's constructed. As always with nodes, a
tremendous advantage of building up an effect this way is that everything
that contributes to the final image remains visible and editable.

There's one more thing. For that extra tropical feeling, I applied a Rain
plugin effect on top of the whole composite, as shown in the next picture.

 119

Rain is one of the sample plugins that come
preinstalled with Conduit. You can find it in the
Plugins category in the Conduit Editor.

An interesting thing about the Rain plugin is
that it’s created entirely within Conduit using a
combination of Conduit nodes and small bits of
JavaScript programming.

I've written a separate tutorial about it, so if
you’re interested in a more in-depth look at how
to program Conduit to render pretty much
anything imaginable, please have a look at the
Making Rain tutorial in this book.

